Reaction of 2-alkylamino-1-azaazulenes with N -phenylbenzylideneamine N -oxide; one pot synthesis of the $12 \mathrm{H}-11,12,13$ -triazaazuleno[2,1-b]fluorene ring system

N oritaka A be, ${ }^{*, a} \mathrm{H}$ aruhiko M atsuda, ${ }^{\text {a }}$ Y oshikazu Sugihara ${ }^{\text {a }}$ and A kikazu Kakehi ${ }^{\text {b }}$
${ }^{\text {a }}$ D epartment of C hemistry, F aculty of Science, Y amaguchi U niversity, Y amaguchi 753, J apan
${ }^{b}$ D epartment of Chemistry and M aterial Engineering, Faculty of Engineering,
Shinshu U niversity, W akasato N agano 380, J apan

Abstract

2-A lkylamino-1-azaazulenes react with N -phenylbenzylideneamine N -oxide to give pentacyclic 12 -alkyl-5-phenyl 12H-11,12,13-triazaazuleno[2,1-b]fluorene-2-carbaldehydes, novel pericyclic 22π aromatic heterocycles, in one pot.

Thechemistry of fuzed azaazulenes is of interest because of their physical and chemical properties, ${ }^{1-7}$ in comparison with those of azulenes. Cycloaddition is an excellent and versatile meth odology for the formation of fused heterocycles. Recently, we reported the cycloaddition reaction of 2 -amino-1-azaazulenes with heterocumulenes, such as ketenes ${ }^{8}$ and aryl isocyanates, ${ }^{9}$ giving new fused heterocycles. It is well known that nitrones undergo 1,3-dipolar cycloadditions with a variety of dipolarophiles to give mainly isoxazoline derivatives. ${ }^{10,11}$ The reaction of 1 -azaazulenes with nitrones is expected to give rise to a novel cycloaddition, being different from that of other heterocycles Herewe report the interesting cycloaddition reaction of 2 -alkyl-amino-1-azaazulenes with N -phenylbenzylideneamine N -oxide to give a novel pentacyclic compound in one pot.

Treatment of 2-ethylamino-1-azaazulene 1a with excess N -phenylbenzylideneamine N -oxide in benzene at reflux for 10 days gave the pentacyclic 12 -ethyl-5-phenyl-12H-11,12,13-triazaazuleno[2,1-b]fluorene-2-carbaldehyde 4a (19\%) in one pot together with 3-benzoyl-2-ethylamino-1-azaazulene 2a (55\%) and 2 - $\{\mathrm{N}$-ethyl-N-[2-ethylamino-1-azaazulen-3-yl-(phenyl)methyl]amino\}-1-azaazulene 3a (13\%) (Scheme1). Preferential formation of 4 a (45\%) was achieved by treating la with N-phenylbenzylideneamine N -oxide in boiling xylene for 4 days, which also gave reduced amounts of 2a (29\%) and 3a (11\%). Similar treatment of $\mathbf{1 b}$ with N -phenylbenzylideneamine N -oxide in boiling xylene for 10 days gave $\mathbf{2 b}$ (10%), $\mathbf{3 b}$ (32\%) and 4 b (26%)

Thestructures of thesecompounds were deduced from inspection of their spectroscopic data and elemental analyses. From inspection of its mass spectrum $\left[\mathrm{m} / \mathrm{z} 432\left(\mathrm{M}^{+}\right)\right]$and elemental analysis, it was shown that 3a has the molecular formula $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{4}$, suggesting that 3 a has two 2-ethylamino-1azaazulene moieties; inspection of its ${ }^{1} \mathrm{H}$ NMR spectrum agreed with this supposition. It was shown that 3a has a methine and an amino group from its ${ }^{1} \mathrm{H}$ N M R spectrum (δ_{H} 6.27) and IR spectrum ($v_{\text {max }} 3404 \mathrm{~cm}^{-1}$), respectively. From these results, we assigned the structure. In the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectra of 4a, a formyl signal is seen at $\delta_{\mathrm{H}} 10.07$ and $\delta_{\mathrm{C}} 192.52$. In its ${ }^{1} \mathrm{H}$ NMR spectrum, five protons of a seven-membered ring are seen at $\delta_{\mathrm{H}} 7.60-8.80$, with only a small divergence in their coupling constants (J 9.8-10.4); the results suggested that 4a would have aromatic character. The UV-VIS absorption spectrum of 4 a has a characteristic strong band at $541 \mathrm{~nm}\left(\log _{\varepsilon}\right.$ 4.01), suggesting that $4 a$ has a highly conjugated structure. The structure of 4a was finally determined by an X -ray structural

Fig. 1 An ORTEP drawing of 4a with thermal ellipsoids (50\% probability). Selective bond lengths (\AA); $C(1)-C(2) 1.402(6), C(2)-C(3)$ $1.368(7), C(3)-C(4) 1.371(8), C(4)-C(5) 1.388(7), C(5)-C(6) 1.402(7)$, $C(6)-C(7) 1.387(6), C(7)-C(8) 1.421(5), C(8)-C(9) 1.424(5), C(9)-$ $C(10) 1.375(5), C(10)-C(11) 1.440(6), C(11)-(12) 1.390(5), C(12)-$ C(13) 1.375(6), C(13)-C(14) 1.403(6), C(14)-C(15) 1.391(6), C(15)$\mathrm{C}(16) 1.377(6), \mathrm{C}(16)-\mathrm{N}(1) 1.407(5), \mathrm{N}(1)-\mathrm{C}(17) 1.317(5), \mathrm{C}(17)-\mathrm{N}(2)$ $1.379(5), \quad \mathrm{N}(2)-\mathrm{C}(18) \quad 1.362(5), \quad \mathrm{C}(18)-\mathrm{N}(3) 1.356(5), \quad \mathrm{N}(3)-\mathrm{C}(1)$ $1.361(5), \quad C(7)-C(1) 1.456(6), \quad C(8)-C(18) 1.423(5), \quad C(10)-C(17)$ $1.444(5), \quad C(11)-C(16) \quad 1.427(5), \quad C(9)-C(19) 1.493(5), \quad N(2)-C(26)$ 1.472(5).
determination. \dagger A n ORTEP drawing ${ }^{12}$ of 4 a is shown in F ig. 1. In the X-ray structure, bond alternation cannot be seen, and the divergence of the bond lengths is small. F urthermore, the bond lengths in the benzene ring are rather perturbed (1.375-1.427 \AA). All the results show that 4 a is a novel pericyclic 22π aromatic heterocycle.
A plausible mechanism is proposed in Scheme 1. \ddagger The reaction of $\mathbf{1}$ with N -phenylbenzylideneamine N -oxide gives first a hydroxylamine derivative \mathbf{A}. It is plausible that the dehydration from \mathbf{A} giving the imine \mathbf{B} and the successive hydrolysis of \mathbf{B} could furnish $\mathbf{2}$ (path a). Alternatively, dehydrogenation of \mathbf{A} could produce \mathbf{C}, which could easily rearrange to the nitrone \mathbf{D}. A ttack of the amino group of $\mathbf{1}$ at the positive carbon of the nitrone \mathbf{D} then affords the adduct \mathbf{E}, and successive elimination of nitrosobenzenefrom \mathbf{E} furnishes $\mathbf{3}$ (path b). The higher steric

[^0]
interaction of an isopropyl group would facilitate the formation of $\mathbf{3}$; indeed a higher yield of $\mathbf{3 b}$ was observed. The formation of 4 might be initiated by the attack of $\mathrm{C}-3$ of 1 on the nitrone \mathbf{D}; the reaction of \mathbf{D} and $\mathbf{1}$ produces \mathbf{F}, and successive cyclizations give rise to \mathbf{G} and then \mathbf{H}. The rearrangement of \mathbf{H} via the norcaradiene \mathbf{I}, followed by the elimination of aniline from J, furnishes 4 (path c). From consideration of the model, it is possible that attack of the oxygen of \mathbf{G} occurs at a feasible position of the seven-membered ring, where the oxygen is rather close to the $\mathrm{C}-3$ position, to form \mathbf{H}. It is considered that the elevated temperature facilitates the dehydrogenation of \mathbf{A} and the successive cycloaddition of \mathbf{D} with $\mathbf{1}$. Indeed the yield of 4 a was enhanced to 45% in boiling xylene.

Thetreatment of la with benzoic anhydride in boiling toluene in the presence of pyridinefor 1 day gave rise to N -benzoylation, and yielded 2 -(N -benzoyl-N-ethylamino)-1-azaazulene (78\%) ThereforeC-benzoylation, yielding 2a preferentially by the reaction of la with N -phenylbenzylideneamine N -oxide in benzene, is also meaningful. This can be understood as follows; the N benzoylation occurs at the harder amino group of 1a, whereas the C-benzoylation occurs at the softer, C-3 position of 1a after treatment with 'soft' N -phenylbenzylideneamine N -oxide

Experimental

All new compounds were characterized by their spectroscopic data as well as elemental analyses and/or mass spectra.

Reaction of 2-alkylamino-1-azaazulene 1 with N -phenylbenzylideneamine N -oxide; a typical procedure

A solution of 2-ethylamino-1-azaazulene 1a $0.516 \mathrm{~g}, 3.00$ mmol) and N -phenylbenzylideneamine N -oxide (1.773 g, 9.00 mmol) in dry benzene (60 ml) was heated under reflux for 10 days, and then the solvent was evaporated. The residue was chromatographed on a silica gel column repeatedly with chloroform to give 3-benzoyl-2-ethylamino-1-azaazulene 2a (0.451 g , 55%), $\quad 2$ - \{ N -ethyl-N -[2-ethylamino-1-azaazulen-3-yl(phenyl)-
methyl]amino\}-1-azaazulene 3 a ($0.170 \mathrm{~g}, 13 \%$) and 12 -ethyl-5-phenyl-12H-11,12,13-triazaazuleno[2,1-b]fluorene-2-carbaldehyde 4 a ($0.111 \mathrm{~g}, 19 \%$).
3-Benzoyl-2-ethylamino-1-azaazulene 2a. Orange prisms (from hexane-dichloromethane), $\mathrm{mp} 124-125^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.41(3 \mathrm{H}$, t, J 7.3§), 3.83 ($2 \mathrm{H}, \mathrm{qd}, \mathrm{J} 7.3$ and 6.1), $7.20-7.69$ ($9 \mathrm{H}, \mathrm{m}$), 8.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.4$) and $8.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3336(\mathrm{NH})$ and 1604 (C=O); $\lambda_{\text {max }}(E t O H) / n m(\log \varepsilon) 284$ (4.43), 312 (4.25), 384 (3.86) and $456(3.99) ; \mathrm{m} / \mathrm{z} 277\left(\mathrm{M}^{+}+1,100\right), 276\left(\mathrm{M}^{+}, 74\right)$ and 248 (79) (Found: C, 78.3; H, 5.8; N, 10.1. Calc. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: C, 78.2; H , 5.8; N, 10.1\%).
2- \{ N - E thyl- N -[2-ethylamino-1-azaazulen- 3 - yl (phenyl)-
methylJamino -1 -azaazulene 3 a . Y ellow needles (from hexane), $\mathrm{mp} 90-92{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 0.94(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0), 3.35-3.65(4 \mathrm{H}, \mathrm{m}), 6.27$ (1 $\mathrm{H}, \mathrm{s}), 7.10-7.23(8 \mathrm{H}, \mathrm{m}), 7.31-7.48(5 \mathrm{H}, \mathrm{m}), 7.53-7.63(2 \mathrm{H}$, $\mathrm{m})$ and $7.93(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8) ; v_{\max } / \mathrm{cm}^{-1} 3404(\mathrm{NH}) ; \lambda_{\text {max }}(\mathrm{EtOH}) /$ $\mathrm{nm}(\log \varepsilon) 240(4.29, \mathrm{sh}), 281(4.63), 317(4.43), 325(4.42$, sh), 363 (3.86), 384 (3.85), 411 (3.81), 432 (3.78), 450 (3.76, sh), 482 (3.58, sh) and $510(3.16, \mathrm{sh}) ; \mathrm{m} / \mathrm{z} 433\left(\mathrm{M}^{+}+1,15\right), 432\left(\mathrm{M}^{+}, 30\right)$ and 261 (100) (Found: C, 80.2; H, 6.8; N, 12.6. Calc. for $\left.\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{4}: \mathrm{C}, 80.5 ; \mathrm{H}, 6.5 ; \mathrm{N}, 13.0 \%\right)$.

12-E thyl-5-phenyl-12H-11,12,13-triazaazuleno[2,1-b]-

fluorene-2-carbaldehyde 4a. Red prisms (from ethyl acetate), mp $>300^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.79(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0), 5.27(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0), 6.98(1 \mathrm{H}, \mathrm{d}$, J 7.9), $7.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.9$ and 1.5$)$, $7.60(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.4), 7.61-$ $7.68(2 \mathrm{H}, \mathrm{m}), 7.72-7.80(3 \mathrm{H}, \mathrm{m}), 7.89(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.8), 7.99(1 \mathrm{H}$, d, J 9.8), 8.10 ($1 \mathrm{H}, \mathrm{ddd}$, J 10.4, 9.8 and 1.2), 8.27 ($1 \mathrm{H}, \mathrm{d}$, J 1.5), $8.80\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4\right.$ and 1.2) and $10.07(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}} 13.73$, $41.43,120.46,120.69,121.71,127.77,129.57,129.95,130.05$, $131.40,132.20,133.23,135.07,135.82,136.06$ and 192.52; $v_{\text {max }} / \mathrm{cm}^{-1} 1634(\mathrm{C}=0) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}(\log \varepsilon) 258$ (4.14), 293 (4.02), 280 (4.66) and 541 (4.01); m/z $401\left(\mathrm{M}^{+}, 49\right)$ and 373 (100) (Found: C, 79.4; H, 5.1; N, 10.1. Calc. for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, 79.0; H, 4.9; N, 10.2\%).

[^1]
$X-R$ ay structure determination

Crystal data of 4a. Red prism, $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}, \mathrm{M}=401.47$, monoclinic, space group $P 2_{1} / n, a=13.359(8), b=10.825(6)$, $\mathrm{C}=14.148(3) \AA, \beta=92.19(2)^{\circ}, \mathrm{V}=2044.4(9) \AA^{3}, \mathrm{Z}=4, \mathrm{D}_{\mathrm{c}}=$ $1.304 \mathrm{~g} \mathrm{~cm}^{-3}$, crystal dimensions $0.24 \times 0.28 \times 0.84 \mathrm{~mm}$. D ata were measured on a Rigaku AFC 5 S radiation diffractometer with graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation. A total of 5170 reflections (4959 unique) were collected using the $\omega-2 \theta$ scan technique within a 2θ range of 56.0°. The structure was solved by direct methods and refined by a full-matrix leastsquares method using 357 variables refined with 1793 reflections $[1>2 \sigma(I)]$. The weighting scheme $\omega=4 \mathrm{~F}_{0}{ }^{2} / \sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)$ gave satisfactory agreement analyses. The final refinement converged to $\mathrm{R}=0.060$ and $\mathrm{Rw}=0.054$. A tomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/98.

Acknowledgements

We thank Professor Akira Mori (Kyushu University) for acquiring mass spectra and elemental analyses.

References

1 For a review, see T. Nishiwaki and N. A be, H eterocycles, 1981, 15, 547; M . K imura, Y uki G osei K agaku K yokaishi, 1981, 39, 690.
2 O. M eth-Cohn, C. M oore and P. H. van Rooyen, J. Chem. Soc., Perkin Trans. 1, 1985, 1793.
3 K. H afner, Kimia, 1973, 27, 640; K. H afner, Lect. H eterocycl. Chem., 1976, 3, 33
4 K. Hafner and J. Haring, E rdoel K ohel, Erdgas, Petrochem., 1979, 32, 136.
5 N. Nitta, Y. Iino, E. H ara and T. K obayashi, J. Chem. Soc., Perkin Trans. 1, 1989, 51.
6 M . N ita, Y. I ino and S. M ori, Tetrahedron Lett., 1991, 32, 6727.
7 M . Nitta, H. K awaji and N. K anomata, Tetrahedron Lett., 1992, 33, 251.

8 N. A be, I. Osaki, S. K ojima, H. M atsuda, Y. Sugihara and A. K akehi, J. C hem. Soc., Perkin Trans. 1, 1996, 2351.

9 N. A be, H. M atsuda, Y. Sugihara and A. K akehi, J. Heterocycl. C hem., 1996, 33, 1323.
10 J. H amer and A. M acaluso, C hem. Rev., 1964, 64, 473.
$11 \mathrm{~J} . J$. Tufariello, 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley, N ew York, 1984, vol. 2, ch. 9.
12 C. K. Johnson, ORTEP II, Report ORNL-5138. Oak Ridge N ational Laboratory, Oak R idge, Tennessee, 1976.

Paper 7/006545D
Received 28th J anuary 1997
A ccepted 5th February 1997

[^0]: \dagger H owever, the relatively high uncertainty on bond distances, combined with the possibility of systematic errors arising from the low proportion of observed data, means that these conclusions must be treated with some caution
 \ddagger We thank one of the referees for the suggestion of the possible formation of the nitrone \mathbf{D}.

[^1]: §) Values given in Hz .

